Diazonium Salt-Based Surface-Enhanced Raman Spectroscopy Nanosensor: Detection and Quantitation of Aromatic Hydrocarbons in Water Samples

نویسندگان

  • Inga Tijunelyte
  • Stéphanie Betelu
  • Jonathan Moreau
  • Ioannis Ignatiadis
  • Catherine Berho
  • Nathalie Lidgi-Guigui
  • Erwann Guénin
  • Catalina David
  • Sébastien Vergnole
  • Emmanuel Rinnert
  • Marc Lamy de la Chapelle
چکیده

Here, we present a surface-enhanced Raman spectroscopy (SERS) nanosensor for environmental pollutants detection. This study was conducted on three polycyclic aromatic hydrocarbons (PAHs): benzo[a]pyrene (BaP), fluoranthene (FL), and naphthalene (NAP). SERS substrates were chemically functionalized using 4-dodecyl benzenediazonium-tetrafluoroborate and SERS analyses were conducted to detect the pollutants alone and in mixtures. Compounds were first measured in water-methanol (9:1 volume ratio) samples. Investigation on solutions containing concentrations ranging from 10-6 g L-1 to 10-3 g L-1 provided data to plot calibration curves and to determine the performance of the sensor. The calculated limit of detection (LOD) was 0.026 mg L-1 (10-7 mol L-1) for BaP, 0.064 mg L-1 (3.2 × 10-7 mol L-1) for FL, and 3.94 mg L-1 (3.1 × 10-5 mol L-1) for NAP, respectively. The correlation between the calculated LOD values and the octanol-water partition coefficient (Kow) of the investigated PAHs suggests that the developed nanosensor is particularly suitable for detecting highly non-polar PAH compounds. Measurements conducted on a mixture of the three analytes (i) demonstrated the ability of the developed technology to detect and identify the three analytes in the mixture; (ii) provided the exact quantitation of pollutants in a mixture. Moreover, we optimized the surface regeneration step for the nanosensor.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Biosensing Based on Surface-Enhanced Raman Spectroscopy by Using Metal Nanoparticles

Surface-enhanced Raman spectroscopy (SERS) is a promising tool in the analytical science because it provides good selectivity and sensitivity without the labeling process required by fluorescence detection. This technique consists of locating the target analyte on nanometer range of roughed Au-nanoparticles. The presence of the metal nanoparticles provides a tremendous enhancement to the result...

متن کامل

Molecular Diagnosis of Plasma Phenylalanine in Neonates with Phenylketonuria Disease Using Biological Sensors Based on Surface-Enhanced Raman Spectroscopy (SERS)

In this study, silver nanoparticles were chemically synthesized and deposited on glass substrates using a reducing agent of sucrose, at 50°C. Different characterizations including atomic force microscopy (AFM), field emission scanning electron microscopy (FESEM), and Raman spectroscopy were obtained to study silvery substrates. Then, the silvery substrates were used as the SERS substrates to de...

متن کامل

Determination of Polycyclic Aromatic Hydrocarbons in Olive and Refined Pomace Olive Oils using HPLC/FLD

ABSTRACT: In this study, an analytical method is developed to determine 15 polycyclic aromatic hydrocarbons (PAHs) in olive and refined pomace olive oils using HPLC coupled with a fluorescence detector. The standardised method of ultrasound-assisted solvent extraction consisted of liquid–liquid extraction with organic solvent and purification on C18 and Florisil bonded-phase cartridges was modi...

متن کامل

Carbon nanotube bundles as molecular assemblies for the detection of polycyclic aromatic hydrocarbons: surface-enhanced resonance Raman spectroscopy and theoretical studies.

In this work surface-enhanced resonance Raman spectroscopic experiments have demonstrated that metallic single-walled carbon nanotubes can be used as chemical assemblies between the pyrene analyte and the silver colloidal surface. Pyrene has been detected at concentrations lower than 10(-9) M by use of the 514.5 nm excitation laser line. A charge transfer from the surface to the nanotube charac...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 17  شماره 

صفحات  -

تاریخ انتشار 2017